

Vissersdijk 4, 4301 ND Zierikzee, the Netherlands

SM3300 - Power Sink Option

2 Quadrant operation: Source and Sink

SM66-AR-110

The Power Sink Option permits the power supply to absorb bursts of power fed back to the unit. An internal module senses the status of power supply and sinks current across the output terminals, thus maintaining a constant output voltage.

The Power Sink Option allows a faster response when the power supply is step programmed to a lower voltage at low load conditions.

- Can absorb up to 300 W peak power
- Maintains output voltage setting regardless output power is positive or negative (source and sink)
- Ideal solution for supplying electric motors with PWM-speed control. These systems often return power to the power supply during a braking action
- Ideal solution for ATE systems requiring fast down programming at no load conditions
- Generation Automotive waveforms (fast)

SM18-220 **with** Power Sink Option Current – 40 A means the load delivers 40 A to the power supply (sink operation)

Upper trace: output voltage Lower trace: output current (current switching from +80 A to –40 A at Vo=6 V)

Models	Order-Code
SM 18-220	Option P306
SM 66-AR-110	Option P308
SM 100-AR-75	Option P309
SM 330-AR-22	Option P310
SM660-AR-11	Option P311

SM18-220 without Power Sink Option The output voltage is out of control when the output current is **negative**

Upper trace: output voltage Lower trace: output current (current switching from +80 A to –40 A at Vo=6 V)

Power Sink Specifications	SM18-220 Option P306	SM66-AR-110 <i>Option P308</i>	SM100-AR-75 <i>Option P309</i>	SM330-AR-22 <i>Option P310</i>	SM660-AR-11 <i>Option P311</i>		
Sink Power Rating max. peak power (electronically limited) max. continuous power (T _{amb} . = 25 °C) max. continuous power (T _{amb} . = 50 °C)	300W 300W 275W						
Max duration Sink Peak Power P _{sink} = P _{max} , T _{amb.} = 25 °C	continuous @ P _{sink} = 300W						
Duty cycle for use a Peak Power P _{sink} = P _{max} , T _{amb} . = 25 °C	100% @ P _{sink} =300W						
Max Sink Current (V ₀ >= 2 V and P <= P _{max})	Limited at 75 A	Limited at 75 A	Limited at 75 A	Limited at 10 A	Limited at 10 A		
Protection	Electronic Power Limit limits the current. The temperature of the power sink is fan controlled, and the circuit shuts down in case of thermal overload.						
Recovery time / Deviation							
V_o = 6 V, I_o : +100 A \rightarrow –30 A recovery within 100 mV / deviation:	di/dt=–2.5A/µs 400µs / 0.30 V	di/dt=–2.5A/µs 750µs / 1.20 V	-	-	-		
V_o = 15 V, I_o : +100 A \rightarrow –10 A recovery within 100 mV / deviation:	di/dt=–2.5A/µs 450µs / 0.30 V	di/dt=–2.5A/µs 600µs / 0.85 V	-	-	-		
V_{o} = 24 V, I_{o} : +70 A \rightarrow –7.5 A recovery within 100 mV / deviation:	-	di/dt=–1.5A/µs 1.1ms / 0.90 V	di/dt=–1.8A/µs 600µs / 0.65 V	-	-		
V_{o} = 60 V, I_{o} : +35 A \rightarrow –3 A recovery within 100 mV / deviation:	-	di/dt=–1.0A/µs 2 ms / 0.90 V	di/dt=–0.8A/µs 2.2ms / 0.60 V	- di/dt=–0.3A/µs	- di/dt=–0.15 A/µs		
V_{o} = 300 V, I_{o} : +8 A \rightarrow –0.5 A recovery within 1 V / deviation:	-	-	-	1.0ms / 1.9 V	0.5ms / 3.0 V		
V_{o} = 600 V, I_{o}: +4 A \rightarrow –0.25 A recovery within 1 V / deviation:	-	-	-	-	di/dt=–0.07 A/µs 1.5ms / 3.0 V		
(load current switches from positive to negative)	note: values are typical	note: values are typical	note: values are typical	note: values are typical	note: values are typical		
Programming Down Speed							
Fall time at no load (90 – 10%) Fall time at no load <i>without Power Sink</i>	$(6 \to 0 \text{ V}) \\ 2.3 \text{ms} \\ 1.2 \text{s} \\ (18 \to 0 \text{ V}) \\ 14 \text{ C} \\ 14 \text{ C}$	$(33 \rightarrow 0 \text{ V})$ 5.6ms 3.5s $(66 \rightarrow 0 \text{ V})$	$(50 \rightarrow 0 \text{ V})$ 11.5ms 2.3s $(100 \rightarrow 0 \text{ V})$	$(165 \rightarrow 0 \text{ V})$ 14ms 3.5s $(330 \rightarrow 0 \text{ V})$	$(330 \rightarrow 0 \text{ V})$ 12ms 3.5s $(660 \rightarrow 0 \text{ V})$		
Fall time at no load (90 – 10%) Fall time at no load <i>without Power Sink</i>	14.8ms 4.2s	23ms 5s	45.0ms 9.4s	50ms 12s	45ms 11s		
Unit with Hi Speed Programming Option Fall time at no load (90 – 10%)	P306 + P300 (6 → 0 V) 0.09ms	P308 + P302 (33 → 0 V) 0.55ms	P309 + P303 (50 → 0 V) 0.48ms	P310 + P304 (165 → 0 V) 1.5ms	P311 + P305 (330 → 0 V) 2.2ms		
Fall time at no load <i>without Power Sink</i> Fall time at no load (90 – 10%)	23ms (18 → 0 V) 0.3ms	150ms (66 → 0 V) 1.5ms	60.6ms (100 → 0 V) 1.4ms	600ms (330 → 0 V) 4.8ms	720ms (660 → 0 V) 8ms		
Fall time at no load without Power Sink	34ms	600ms	425ms	2s	3.8s		
Parallel and Series operation Refer to power sink manual for details and restrictions.	Using multiple units in parallel operation, only one unit can have a power sink. Using multiple units in series operation, all units must have a power sink.						

Notes:

The maximum sink current at higher voltages will not be the maximum specified current due to the power limit.
For example, for an SM66-AR-110 at 30V, the max sink current will be 10 A (30 V x 10 A = 300 W = max power).
A higher sink current than the maximum current will cause the output voltage to rise.

SM66-AR-110 with Power Sink Option fast discharge of output capacitors by Power Sink circuit

Trace: output voltage Voltage Programming Speed at NO LOAD

SM66-AR-110 without Power Sink Option slow response time during voltage step down, time needed to discharge the output capacitors

Trace: output voltage Voltage Programming Speed at NO LOAD